
AVS - The Chinese Next-Generation Video Coding
Standard

Wen Gao1, Cliff Reader2, Feng Wu3, Yun He4, Lu Yu5,
Hanqing Lu6, Shiqiang Yang7, Tiejun Huang1, Xingde Pan8

Joint Development Lab., Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.1

 Consultant, Chinese Academy of Sciences.2 Microsoft Research Asia, Beijing, 100080, China.3

 Dept. of Electronic Eng. , Tsinghua University. 4

Institute of Information and Communication Engineering, Zhejiang University.5

NLPR, Institute of Automation, Chinese Academy of Sciences. 6

Department of Computer Science and Technology, Tsinghua University.7

Beijing Media Works Co. Ltd, Beijing, China.8

INTRODUCTION
The Audio Video Coding Standard of China (AVS)
 video standard is a streamlined, highly efficient
video coder employing the latest video coding tools
and dedicated to coding HDTV content. All video
coding algorithms comprise an optimization
between absolute coding performance and
complexity of implementation. Compared with
other standards, AVS has been designed to provide
near optimum performance and a considerable
reduction in complexity. AVS will therefore provide
low-cost implementations.

AVS has also been designed in such a way that its
technology can be licensed without delay and for a
very reasonable fee. This has required some
compromises in the design but the benefits of a non-
proprietary, open standard, and the licensing cost
savings easily outweigh the small loss in eff iciency.

The AVS 1.0 specification was finalized in
December 2003 and will be extensively tested with
laboratory verification tests and field tests in 2004. It
is expected to be issued as a Chinese National
Standard in Summer 2004.

AVS applications include broadcast TV, HD-DVD,
and broadband video networking.

DATA FORMATS
Progressive scan
AVS codes video data in progressive scan format.
This format is directly compatible with all content
that originates in film, and can accept inputs directly
from progressive telecine machines. It is also directly
compatible with the emerging standard for digital
production – the so-called “24p” standard. In the next
few years, most movie production and much TV
production will be converted to this new standard. It
will also be the standard for digital cinema, so there
is convergence in the professional film and TV
production industry toward a single production
format offering the highest original quality. AVS also
codes progressive content at higher frame rates. Such
rates may be necessary for televised sports.

A significant benefit of progressive format is the
efficiency with which motion estimation operates.
Progressive content can be encoded at significantly
lower bitrates than interlaced content with the same
perceptual quality. Furthermore, motion compensated
coding of progressive format data is significantly less

complex than coding of interlaced data. This is a
significant component of the reduced complexity of
AVS coding.

Interlaced scan
AVS also provides coding tools for interlaced scan
format. These tools offer coding of legacy interlaced
format video.

Picture format
AVS is primarily focused on broadcast TV
applications with an emphasis on HDTV and
therefore will be used principally with a format of
1920 x 1080 pixels. Nevertheless AVS is a generic
standard and can code pictures with a rectangular
format up to 16K x 16K pixels in size. Pixels are
coded in Luminance-Chrominance format (YCrCb)
and each component can have precision of 8 bits.
AVS supports a range of commonly used frame rates
and pixel aspect ratios AVS supports 4:2:0, and
4:2:2, Chroma formats. Chromaticity is as defined by
international standards.

LAYERED STRUCTURE
AVS is built on a layered data structure representing
traditional video data. This structure is mirrored in
the coded video bitstream. Figure 1 illustrates this
layered structure.

•

• Entry point in Bitstream

• Representation of Video Frame

• Raster-ordered strip of
Macroblocks

• 6 Blocks;
 4 Luminance, 2 Chrominance

 8x8 Pixels;
Luminance, Chrominance

Figure 1. AVS Layered Data Structure

At the highest layer, sets of frames of continuous
video are organized into a Sequence. The Sequence
provides an opportunity to download parameter sets
to decoders. Video frames comprise the next layer,
and are called Pictures to avoid any ambiguity
between legacy video fields and frames. Pictures can

optionally be subdivided into rectangular regions
called Slices. Sli ces are further subdivided into
square regions of pixels called Macroblocks. These
are the fundamental coding units used by AVS and
comprise a set of luminance and chrominance blocks
of pixels covering the same square region of the
Picture.

The Sequence, Picture and Slice layers begin with
unique Start Codes that allow a decoder’s parser to
find them within the bitstream. An example of a
Sequence of Pictures is shown in Figure 2.

Figure 2. Video Sequence Example.

Sequence
The sequence layer comprises a set of mandatory and
optional downloaded system parameters. The
mandatory parameters are necessary to initiali ze
decoder systems. The optional parameters can be
used for other system settings at the discretion of the
network provider. In addition, user data can
optionally be contained in the Sequence header.

The Sequence layer provides an entry point into the
coded video. Sequence headers should be placed in
the bitstream to support user access appropriately for
the given distribution medium. For example, they
should be placed at the start of each chapter on a
DVD to facilit ate random access. Alternatively they
should be placed every ½-second in broadcast TV to
facilit ate changing channels.

Repeat Sequence headers may be inserted to support
random access. Sequences are terminated with a
Sequence End Code.

Picture
The Picture layer provides the coded representation
of a video frame. It comprises a header with
mandatory and optional parameters and optionally
with user data. Three types of Picture are defined by
AVS:

• Intra Pictures (I-pictures)
• Predicted Pictures (P-pictures)
• Interpolated Pictures (B-Pictures)

Slice
The Slice structure provides the lowest-layer
mechanism for resynchronizing the bitstream in case
of transmission error. Sli ces comprise an arbitrary
number of raster-ordered rows of Macroblocks as
ill ustrated in the example of Figure 3. Sli ces must be
contiguous, must begin and terminate at the left and
right edges of the Picture and must not overlap. It is
possible for a single sli ce to cover the entire Picture.
The Slice structure is optional. Sli ces are
independently coded – no sli ce can refer to another
sli ce during the decoding process.

�

�
�

�

�

�

�

�

�

	

Figure 3. Slice Layer example.

Macroblock
A Macroblock includes the luminance and
chrominance component pixels that collectively
represent a 16x16 region of the Picture. In 4:2:0
mode, the Chrominance pixels are subsampled by a
factor of two in each dimension; therefore each
chrominance component contains only one 8x8
block. In 4:2:2 mode, the Chrominance pixels are
subsampled by a factor of two in the horizontal
dimension; therefore each chrominance component
contains two 8x8 blocks. This is illustrated in Figure
4.

� �

� �

� � � � �

� �

� �

� � � � �

�

�

�

�

Figure 4. Macroblock formats.

• Sequence Header

• Pictures

• End Sequence Header

• Pictures

• Repeat Sequence Header

The Macroblock layer is the primary unit of
adaptivity in AVS and the primary unit of motion
compensation. The Macroblock header contains
information about the coding mode and the motion
vectors. It may optionally contain the quantization
parameter.

Block
The Block is the smallest coded unit and contains the
transform coefficient data for the prediction errors. In
the case of Intra-coded blocks, Intra prediction is
performed from neighboring Blocks.

OVERVIEW
The AVS video coding standard is based on the
classic hybrid DPCM-DCT coder, which was first
introduced by Jain and Jain in 1979[1]. Temporal
redundancy is removed by motion-compensated
DPCM coding. Residual spatial redundancy is
removed first by spatial prediction, and finally by
transform coding. Statistical redundancy is removed
by entropy coding.

These basic coding tools are enhanced by a set of
minor coding tools that remove any remaining
redundancy, code side information efficiently and
provide syntax for the coded bitstream. The
algorithm is highly adaptive, since video data
statistics are not stationary and because perceptual
coding is also used to maximize perceived quality.
The adaptivity is applied at both the Picture layer and
the Macroblock layer.

Figure 5 shows block diagrams of the AVS encoder
and decoder. The encoder shown in Figure 5a accepts
input video and stores multiple frames in a set of
frame buffers. These buffers provide the storage and
delay required by multi-frame motion estimation. The
motion estimation unit can accept original frames
from the input buffers or reconstructed coded frames
from the forward and backward reference frame
stores in the encoder. The motion estimation unit can
perform motion estimation in the following ways:

Other Parameters

Motion
Estimation

DCT Quantization VLC
Encode

Bitstream
Format

Inverse
Quantization

Inverse
DCT

Forward
Frame Buffer

Backward
Frame Buffer

Frame
Buffers

Motion
Compensation

Rate
Buffer

+

+

VLC
Encode

Quantization
Control

Mode
Decision

Motion Vectors

C Reader, 2002

Motion Vector
Prediction

Intra
Prediction

Figure 5a. AVS Encoder

Forward prediction from the most recent reference
frame

• Forward prediction from the second most
recent prediction frame

• Interpolative prediction between the most
recent reference frame and a future reference
frame.

Motion estimation produces motion vectors used by
the motion compensation unit to produce a forward
prediction or interpolated prediction for the current
frame. Motion vectors are coded for transmission
first by a predictive encoder, and then by entropy
encoding.

The prediction produced by the motion compensation
unit is subtracted from the current frame and the
difference signal, i.e., the prediction error, is coded
by the DCT and quantization units. In the case of
intra-coded macroblocks, the data passes through the
intra prediction process to the DCT. The signal is
then VLC encoded, formatted with the motion
vectors and other side information and stored
temporarily in the rate buffer. The signal is also
decoded by the inverse quantizer and inverse DCT,
and stored in the forward or backward frame buffers
for subsequent use in motion compensation. The rate
buffer smooths the variable data rate produced by
coding into a constant rate for storage or
transmission. A feedback path from the rate buffer
controls the quantizer to prevent buffer overflow. A
mode decision unit selects the motion compensation
mode for pictures and macroblocks.

The decoder shown in Figure 7b accepts the constant
rate signal from the storage or transmission and
stores it temporarily in a rate buffer. The data is read
out at a rate demanded by the decoding of each
macroblock and picture. The signal is parsed to
separate the quantization parameter, motion vectors
and other side information from the coded data
signal. The signal is then decoded by the inverse
quantizer and inverse DCT to reconstruct the
prediction error or intra coded data. The quantizer is
controlled by the extracted parameter.

The motion vectors are decoded, reconstructed and
used by the motion compensation unit to produce a
prediction for the current picture. This is added to the
reconstructed prediction error to produce the output
signal. In the case of intra-coded macroblocks, the
data passes from the DCT through the intra
prediction process.

Coding tools
The main tools used in the AVS coder are
summarized in Table 1.

Motion compensated prediction
Motion compensated interpolation
Intra prediction
DCT coding and linear quantization
Deblocking (loop filter)
VLC coding
Rate buffering

Table 1. Major Coding Tools

The minor tools used in the AVS coder are
summarized in Table 2.

Inverse
DCT

Inverse
Quantization

VLC
Decode

Bitstream
Parser

Rate
Buffer

+

Forward
Frame Buffer

Backward
Frame Buffer

Motion
Compensation

VLC
Decode

Quantization
Control

Mode
Decision

Other Parameters

C Reader, 2002

Motion Vector
Reconstruction

Intra
Prediction

Figure 5b. AVS Decoder.

Motion vector prediction
Skipped macroblocks
Coded block pattern
Low delay mode
Weighted prediction
Inverse 3:2 pulldown

Table 2. Minor Coding Tools

Modes
AVS uses adaptive modes for motion compensation
at the picture layer and macroblock layer. At the
picture layer, the modes are

• Forward prediction from the most recent
reference frame

• Forward prediction from the second most
recent prediction frame

• Interpolative prediction between the most
recent reference frame and a future reference
frame.

• Intra coding

At the macroblock layer, the modes depend on the
picture mode.

• In Intra pictures, all macroblocks are intra
coded.

• In Predicted pictures, macroblocks may be
forward predicted or intra coded.

• In interpolated pictures, macroblocks may
be forward predicted, backward predicted,
interpolated or intra coded.

Profiles and levels
AVS 1.0 has defined only one profile containing all
AVS coding tools. It is called Jizhun (Base
Reference) Profile.

4 levels are defined in AVS 1.0.

• Level 4.0: Standard Definition 4:2:0,
• Level 4.2: Standard Definition 4:2:2
• Level 6.0: High Definition 4:2:0
• Level 6.2: High Definition 4:2:2

MOTION COMPENSATED PREDICTION
In AVS there three types of pictures:

• Forward predicted: P-Pictures
• Interpolated: B-Pictures
• Intra coded: I-Pictures

Predicted Pictures; P-Pictures
The forward prediction process is illustrated in Figure
6. Prediction of a Macroblock or block in the current
picture may be from the most recent reference picture
or from the second most recent reference picture.
There may be any number of Interpolated pictures in
between the current picture and the most recent
reference picture. There may be any number of
pictures in between the current picture and the second
most recent reference picture. Prediction for
interlaced format is illustrated in Figure 7. In I-
Pictures, the second field may be predicted from the
first field. In P-Pictures, prediction of the current
field may be made from the four most recent fields.
As shown, these fields may be in the current frame,
most recent frame or second most recent frame.

Interpolated Pictures; B-Pictures
The interpolated process is shown in Figure 8. A
Macroblock or block in the current picture is
predicted by the average of the macroblocks or
blocks in the most recent and future P-Pictures that
are selected by the motion vector. Prediction for
interlaced format is illustrated in Figure 9. Two
modes are supported for the motion vector selection.

 In Direct Mode, the motion vectors for a macroblock
in the interpolated frame are derived from the motion
vector of the co-located macroblock in the future P-
frame. A separate motion vector is not transmitted,
and the forward and backward motion vectors are
derived by scaling the P-frame motion vector
according to the temporal distance between the
interpolated frame and the past and future P-frames.

In Symmetric Mode, a single motion vector is
calculated and transmitted that passes through the
macroblock in the interpolated frame, pointing to the
past and future P-frames.

Most
Recent
Reference
Picture

Current
Picture

Second Most
Recent Reference
Picture

Figure 6. P-Pictures

�

3

2

1

0

�

�

�

�

Figure 7. Interlaced P-Frame Prediction.

AVS supports a wide range of prediction modes
using adaptive block sizes. Motion estimation may be
applied collectively to all luminance blocks in a
macroblock, or to pairs of luminance blocks, or
individually to each luminance block. Block formats
are illustrated in Figure 10.

�

�

�

�

�

	

	

Figure 9. Interlaced B-Frame Prediction.

Figure 8. Interpolated Pictures

Figure 10. Motion Compensated Prediction Modes.

Weighted Prediction

Predicted pictures (including P-fields in IP frames)
can be predicted from reference pictures that have
been weighted. This provides a mechanism for low-

residual error prediction when there is a lighting
change in the scene, notably when there is a fade or
cross-fade. The encoder can signal this to the decoder
by optionally transmitting scale and shift parameters
for both luminance and chrominance components.
These parameters are used in the following equations
to compute the weighted prediction matrices:

predMatrix[x,y] =
(predMatrix[x,y] × luma_scale + 16)>>5 + luma_shift

PredMatrix [x,y] =
(PredMatrix[x,y] × chroma_scale + 16)>>5 + chroma_shift

Out-of-Order Coding
Interpolated frames cannot be encoded or decoded
until after the respective reference frames have been
encoded or decoded. Therefore the coded
representations of the reference frames are placed in
the bitstream before those of the interpolated frames.

3

1

1

1

2

0

0

0
0

Most Recent
Reference
Picture

Current
Picture

Future
Reference
Picture

Motion vector precision and range
Motion vectors are computed with ¼-pixel accuracy
and with unlimited range.

Sub-Pixel Interpolation
Luminance values at sub-pixel locations are
interpolated by a process in which the values at ½-
pixel locations are calculated using a 4-tap filter: { -1,
5, 5, -1} , and the values at ¼-pixel locations are
calculated using a 4-tap filter { 1, 3, 3, 1} . For
simplicity, only one-dimensional filters are used. The
nomenclature for the locations is shown in Figure 11.
Shaded locations represent the original (full -pixel)
locations.

aa B

a b c

e f g d

i j k m h

p q r n

s

ee

cc bb

E D

I H

F C

J G

 L K dd

gg

A

ff hh

Figure 11. Sub-Pixel Interpolation

The following equations describe the process for each
sub-pixel location:

B: b’=(-C+5D+5E-F); b=Clip1((b’+4)>>3)
H: h’=(-A+5D+5H-K); h=Clip1((h’+4)>>3)

Similarly, aa, s and dd are computed using the first 4-
tap filter horizontall y on the top, third and bottom
rows of the array in Figure 11, while bb, m and cc are
computed using the left, third and right columns of
the array. Then j can be computed using either the
available row or column of corresponding locations.

J: j’=(-bb+5h+5m-cc) or j’=(-aa+5b+5s-dd);
j=Clip1((j’+32)>>6) �

Then a, d, i and f are computed using the second 4-
tap filter:
a’= (ee+7D+7b+E); a=Clip1((a’+64)>>7)
d’= (ff+7D+7h+H); d=Clip1((d’+64)>>7)
i’= (gg+7h+7j+m); i=Clip1((i’+512)>>10)
f’= (hh+7b+7j+s); f=Clip1((f’+512)>>10)

c and n are computed using the second 4-tap filter
during subsequent cycles of the process. The value of
c is computed during the calculation of sub-pixel
values between pixels E, F, I, J, i.e., one pixel-space
to the right in Figure 11. The value of n is computed
during the calculation of sub-pixel values between
pixels H,I, K, and L, i.e., one pixel-space below in
Figure 11.

Finally, e, g, p, r are computed by simply averaging
their diagonal neighbor pixels:
e = (D + j + 64) >> 7
g = (E + j + 64) >> 7
p = (H + j + 64) >> 7
r = (i + j + 64) >> 7

Chrominance values at sub-pixel locations are computed
from the 4 neighborhood pixels according to the following
equation and Figure 12.

v = ((8-dx)×(8-dy)×A + dx×(8-dy)×B + (8-dx)×dy×C +
dx×dy×D + 32) >> 6
 � �

� �

� � � �
	�
� �

	�
� �

Figure 12. Chrominance Sub-Pixel Interpolation.

Motion vector prediction
Motion vectors are predicted using the motion
vectors for blocks in their neighborhood. The
nomenclature is shown in Figure 13. A, B, C are the
motion vectors of left, above and above-right blocks.

Figure 13. Motion Vector Neighborhood.

The motion vectors are scaled according to the
temporal distance from the reference frame (most
recent or second most recent).

A E

C B

MVA

MVB MVC

If prediction is being performed in 16x8 or 8x16
format, the motion vectors used for prediction are as
follows:

16x8 Mode:
 Top subblock – use MVB
 Bottom Subblock – use MVA
8x16 Mode:
 Left subblock - use MVA
 Right subblock – use MVC

Otherwise, a spatial distance measure is computed:

Dist12 (MV1, MV2) = |x1 – x2| + |y1 – y2|
 Where (x,y) are the components of MV

between pairs of neighboring blocks DistAB;
DistBC, DistCA and the median distance is found.
The prediction motion vector is then found according
to the following rules:
 If median = DistAB, use MVC
 If median = DistBC, use MVA
 If median = Dist CA, use MVB

INTRA-PREDICTION
In Intra frames and intra-coded macroblocks in P-
and B-frames, intra blocks are spatiall y predicted
from neighboring intra-coded blocks. Figure 14
ill ustrates the process, from which it can be seen that
prediction is made using 16 pixels above and to the
right of the block, and 16 pixels to the left and below-
left of the block. There are 5 directional modes and a
DC mode (mode 2).
 � �

� � � �
� �

� �
� �
� �

� �

� �

	 	

�� �

�

�

� �

� ��� �

� �

� �

� ��� �
� ��� �
� ��� �

� ��� �� ��� �� ��� �� ��� �� ��� �� � � ��� �� �� �� �� �� �� �

� ��� �

� �

! !

" "

#

#

Figure 14. Intra Prediction Modes.

Signaling of the prediction mode to the decoder can
be explicit, in which case this is signaled using a
prediction mode flag, or it can be implicit, following

a set of rules so the decoder can make the same
decision as the encoder. In the latter case, selection of
the prediction mode is based on the prediction modes
for the blocks above (Mode A) and to the left (Mode
B) of the current block. The lower numbered mode
for these two blocks is selected for the current block.
If either invalid, pick mode 2. In the former case, the
mode in the bitstream is used if it is smaller than the
mode above, otherwise, add 1 to the bitstream mode.

DCT CODING
Transform
AVS uses a separable, integer-precise, 8x8 discrete
cosine transform (DCT). The inverse transform is
shown in Figure 15. The transform is designed in
conjunction with the quantization to minimize
decoder implementation complexity. This operation
will be described here. The separable inverse
transform is applied to the rows of the coeff icient
matrix data:

H’ = CoeffMatrix × T8
T

The elements of this intermediate transform are then
scaled with rounding:

H” ij = (h’ ij + 4) >> 3

Then the columns are transformed:

H = T8 × H’’ i, j = 0..7

Finall y the residual matrix is formed by scaling (with
rounding):

r ij = [h ij + 26] >> 7 i, j = 0..7

8

8 10 10 9 8 6 4 2

8 9 4 2 8 10 10 6

8 6 4 10 8 2 10 9

8 2 10 6 8 9 4 10

8 2 10 6 8 9 4 10

8 6 4 10 8 2 10 9

8 9 4 2 8 10 10 6

8 10 10 9 8 6 4 2

T

 − − − − −
 − − −
 − − − − = − − − −

− − − − −
 − − −

− − − −

Figure 15. DCT-based integer Transform

Coefficient Scan Order
The 2D coefficients are converted into a 1D sequence
for quantization and coding using a zigzag scan for
progressive data and an alternate scan for interlaced
data. These are shown in Figure 16.

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

0 1 2 3 4 5 6 7

i
0

1

2

3

4

5

6

7

j

Figure 16a. Zigzag Scan.

0 3 11 16 22 32 38 55

1 6 12 20 25 33 42 57

2 7 15 21 28 37 43 58

4 10 19 27 31 39 47 59

5 14 24 30 36 44 50 60

8 17 26 35 41 48 52 61

9 18 29 40 46 51 54 62

13 23 34 45 49 53 56 63

0 1 2 3 4 5 6 7

i
0

1

2

3

4

5

6

7

j

Figure 16b. Alternate Scan

Quantization
Quantization of the transform coeff icients is
performed with an adaptive linear quantizer. The step
size of the quantizer can be varied to provide rate
control. In constant bitrate operation, this mechanism
is used to prevent buffer overflow. The transmitted
step size quantization parameter is used directly for
luminance coeff icients. For chrominance coeff icients
it is modified on the upper end of its range.

The quantization parameter may optionally be fixed
for an entire picture or sli ce. If it is not fixed, it may
be updated differentiall y at every macroblock.

The linear quantization process is modified to work
together with the transform in order to provide low
complexity decoder implementation. The resulting
non-linear quantization and scaling coeff icients are
held in look-up tables, “DequantTable” , “ShiftTable”

and the inverse quantization and scaling process is as
follows:

w ij = (QuantCoeffMatrix[i,j]×DequantTable(QP)

+2ShiftTable(QP)-1) >> ShiftTable(QP) i,j=0..7

ENTROPY CODING
The quantized coeff icients are coded using a 2D
variable length code for run and level. Sets of kth-
order exponential Golomb codes are used, with a
code number (“CodeNumber”) range of 0 to 59. The
code number 59 is used as an escape code. A set of 7
tables is used for intra-coded luminance coeff icients
and a set of 7 tables for inter-coded luminance
coeff icients. A set of 5 tables is used for both intra-
and inter-coded chrominance coeff icients. An “EOB”
(End of Block) code is used to terminate coding of a
given block. (However tables VLC0_Intra,
VLC0_Inter and VLC0_Chroma are used only to
decode the first coeff icient, so that in these tables
there is not EOB, as it is obvious that if a block has
non-zero coeff icients, the first coeff icient cannot be
EOB). In all these tables, the assignment of code
numbers to level and run is specified only for positi ve
levels. Run and negative levels are assigned as
follows:

CodeNumber (-abs(level), run) =
 CodeNumber (abs(level), run) + 1

In the decoding process, 2D-VLC tables are switched
based on the size of the previously decoded level. A
set of threshold level values determines the switching
point. The first coeff icient in a block is decoded
using the first table. The absolute value of that
coeff icient is compared against the set of thresholds
to determine which table will be used for the next
coeff icient. This process continues recursively until
the EOB is decoded. Decoding of that block then
terminates and the process is reset for the next block.

When the code number is equal to 59 in the parsing
process, which means (level, run) is beyond the scope
of the table, another two CodeNumbers are parsed
from the bitstream, and decoded to produce level and
run values.

Entropy coding is also used for other elements of the
bitstream, notably the motion vectors.

DEBLOCKING FILTER
The deblocking filter or loop filter is a non-linear 1D
filter selectively applied across the edges of blocks in
order to smooth block artifacts. The filter is turned on
and off, and applied with varying strength according
to local conditions in the block neighborhood. The
filter parameters can be signaled explicitl y in the
bitstream on a picture basis, or they can be deduced
by the decoder based on the local conditions. The

deblocking filter is applied recursively to the upper
edge and left-hand edges of blocks. Essentially, the
filter is adaptive to whether adjacent blocks are intra
coded or whether the reference frames and motion
vectors are significantly different. Further, the filter is
adaptive to local pixel gradients across the block
boundary and to the state of the quantization
parameter. Experience has shown that all these
factors influence discontinuities across block
boundaries and the visibility of such discontinuities.

RATE BUFFERING
AVS supports constant bitrate (CBR) operation using
traditional coding tools.

SYNTAX
The AVS syntax supports a number of additional
features, some of which are listed here:

• Separate I and PB picture headers
• Progressive sequence and frame
• Interlaced parameters
• Low -delay mode incl. buffer management
• Sequence extension data
• SMPTE timecode in I-pictures
• Picture distance
• Fixed QP at frame or slice level
• Skip coding mode
• Picture weighting selection and parameters

PERFORMANCE
The performance of AVS has been measured for a set
of HDTV test sequences. The format of these
sequences is 720p, and the range of bitrates is from
approximately 1Mbit/s to approximately 20 Mbit/s. A
comparison has been made with H.264. The results
are shown in Figure 17, from which it can be seen
that for these sequences and bitrates, the
performance of AVS 1.0 is within 0.1dB in almost all
cases.

SUMMARY
The AVS 1.0 standard combines a set of traditional
video coding tools with new coding tools into an
efficient new algorithm. Compared with other
standards, AVS is significantly less complex.
However, the performance of AVS for its target
applications is very high. This indicates that by
focusing on particular applications, and using
innovative algorithm design, it is possible to
simultaneously achieve high coding efficiency and
low implementation cost.

Reference
J R Jain, A K Jain, “Interframe Adaptive Data
Compression Techniques for Images”, Signal and
Image Processing lab., Dep. Electrical & Computer
Eng., UC Davis Tech Rep., Aug 1979.

City

33

34

35

36

37

38

39

40

41

1000 3000 5000 7000 9000 11000 13000
Bitrate(kbits/s)

�
��

�
��
��
�

H.264

AVS CD

RM30 Final

Harbour

33

34

35

36

37

38

39

40

41

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Bitrate(kbits/s)

�
��

�
��
��
�

H.264

AVS CD

Rm30 Final

Spincalendar

33

34

35

36

37

38

39

40

1000 6000 11000 16000 21000

Bitrate(kbits/s)

�
��

�
��
��

H.264

AVS CD

RM30 Final

Figure 17. AVS Test Results.
[AVS CD, AVS Ref. Model 30, H.264]

[H.264 Main Profile with CABAC and Loop Filter on]

