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INTRODUCTION
The Audio Video Coding Standard of China (AVS)
 video standard is a streamlined, highly efficient
video coder employing the latest video coding tools
and dedicated to coding HDTV content. All video
coding algorithms comprise an optimization
between absolute coding performance and 
complexity of implementation. Compared with 
other standards, AVS has been designed to provide 
near optimum performance and a considerable 
reduction in complexity. AVS will therefore provide 
low-cost implementations.

AVS has also been designed in such a way that its 
technology can be licensed without delay and for a 
very reasonable fee. This has required some 
compromises in the design but the benefits of a non-
proprietary, open standard, and the licensing cost 
savings easily outweigh the small loss in eff iciency.

The AVS 1.0 specification was finalized in 
December 2003 and will be extensively tested with 
laboratory verification tests and field tests in 2004. It 
is expected to be issued as a Chinese National 
Standard in Summer 2004.

AVS applications include broadcast TV, HD-DVD, 
and broadband video networking.

DATA FORMATS
Progressive scan
AVS codes video data in progressive scan format. 
This format is directly compatible with all content 
that originates in film, and can accept inputs directly 
from progressive telecine machines. It is also directly 
compatible with the emerging standard for digital 
production – the so-called “24p” standard. In the next 
few years, most movie production and much TV 
production will be converted to this new standard. It 
will also be the standard for digital cinema, so there 
is convergence in the professional film and TV 
production industry toward a single production 
format offering the highest original quality. AVS also 
codes progressive content at higher frame rates. Such 
rates may be necessary for televised sports.

A significant benefit of progressive format is the 
efficiency with which motion estimation operates. 
Progressive content can be encoded at significantly 
lower bitrates than interlaced content with the same 
perceptual quality. Furthermore, motion compensated 
coding of progressive format data is significantly less 

complex than coding of interlaced data. This is a 
significant component of the reduced complexity of 
AVS coding.

Interlaced scan
AVS also provides coding tools for interlaced scan 
format. These tools offer coding of legacy interlaced 
format video. 

Picture format
AVS is primarily focused on broadcast TV 
applications with an emphasis on HDTV and 
therefore will be used principally with a format of 
1920 x 1080 pixels. Nevertheless AVS is a generic 
standard and can code pictures with a rectangular 
format up to 16K x 16K pixels in size. Pixels are 
coded in Luminance-Chrominance format (YCrCb) 
and each component can have precision of 8 bits. 
AVS supports a range of commonly used frame rates 
and pixel aspect ratios AVS supports 4:2:0, and 
4:2:2, Chroma formats. Chromaticity is as defined by 
international standards.

LAYERED STRUCTURE
AVS is built on a layered data structure representing 
traditional video data. This structure is mirrored in 
the coded video bitstream. Figure 1 illustrates this 
layered structure. 

•

• Entry point in Bitstream

• Representation of Video Frame

• Raster-ordered strip of 
Macroblocks

• 6 Blocks;
    4 Luminance, 2 Chrominance

 8x8 Pixels;
Luminance, Chrominance

Figure 1. AVS Layered Data Structure

At the highest layer, sets of frames of continuous 
video are organized into a Sequence. The Sequence 
provides an opportunity to download parameter sets 
to decoders. Video frames comprise the next layer, 
and are called Pictures to avoid any ambiguity 
between legacy video fields and frames. Pictures can 



optionally be subdivided into rectangular regions 
called Slices. Sli ces are further subdivided into 
square regions of pixels called Macroblocks. These 
are the fundamental coding units used by AVS and 
comprise a set of luminance and chrominance blocks 
of pixels covering the same square region of the 
Picture. 
 
The Sequence, Picture and Slice layers begin with 
unique Start Codes that allow a decoder’s parser to 
find them within the bitstream. An example of a 
Sequence of Pictures is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Video Sequence Example. 
 
Sequence 
The sequence layer comprises a set of mandatory and 
optional downloaded system parameters. The 
mandatory parameters are necessary to initiali ze 
decoder systems. The optional parameters can be 
used for other system settings at the discretion of the 
network provider. In addition, user data can 
optionally be contained in the Sequence header.  

 
The Sequence layer provides an entry point into the 
coded video. Sequence headers should be placed in 
the bitstream to support user access appropriately for 
the given distribution medium. For example, they 
should be placed at the start of each chapter on a 
DVD to facilit ate random access. Alternatively they 
should be placed every ½-second in broadcast TV to 
facilit ate changing channels. 
 
Repeat Sequence headers may be inserted to support 
random access. Sequences are terminated with a 
Sequence End Code. 
 
Picture 
The Picture layer provides the coded representation 
of a video frame. It comprises a header with 
mandatory and optional parameters and optionally 
with user data. Three types of Picture are defined by 
AVS: 

• Intra Pictures (I-pictures) 
• Predicted Pictures (P-pictures) 
• Interpolated Pictures (B-Pictures) 

Slice 
The Slice structure provides the lowest-layer 
mechanism for resynchronizing the bitstream in case 
of transmission error. Sli ces comprise an arbitrary 
number of raster-ordered rows of Macroblocks as 
ill ustrated in the example of Figure 3. Sli ces must be 
contiguous, must begin and terminate at the left and 
right edges of the Picture and must not overlap. It is 
possible for a single sli ce to cover the entire Picture. 
The Slice structure is optional. Sli ces are 
independently coded – no sli ce can refer to another 
sli ce during the decoding process. 
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Figure 3. Slice Layer example. 
 
Macroblock 
A Macroblock includes the luminance and 
chrominance component pixels that collectively 
represent a 16x16 region of the Picture. In 4:2:0 
mode, the Chrominance pixels are subsampled by a 
factor of two in each dimension; therefore each 
chrominance component contains only one 8x8 
block. In 4:2:2 mode, the Chrominance pixels are 
subsampled by a factor of two in the horizontal 
dimension; therefore each chrominance component 
contains two 8x8 blocks. This is illustrated in Figure 
4. 
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Figure 4. Macroblock formats. 

• Sequence Header 

• Pictures 

• End Sequence Header 

• Pictures 

• Repeat Sequence Header 



The Macroblock layer is the primary unit of 
adaptivity in AVS and the primary unit of motion 
compensation. The Macroblock header contains 
information about the coding mode and the motion 
vectors. It may optionally contain the quantization 
parameter.  
 
Block 
The Block is the smallest coded unit and contains the 
transform coefficient data for the prediction errors. In 
the case of Intra-coded blocks, Intra prediction is 
performed from neighboring Blocks. 
 
OVERVIEW 
The AVS video coding standard is based on the 
classic hybrid DPCM-DCT coder, which was first 
introduced by Jain and Jain in 1979[1]. Temporal 
redundancy is removed by motion-compensated 
DPCM coding. Residual spatial redundancy is 
removed first by spatial prediction, and finally by 
transform coding. Statistical redundancy is removed 
by entropy coding.  
 

These basic coding tools are enhanced by a set of 
minor coding tools that remove any remaining 
redundancy, code side information efficiently and 
provide syntax for the coded bitstream. The 
algorithm is highly adaptive, since video data 
statistics are not stationary and because perceptual 
coding is also used to maximize perceived quality. 
The adaptivity is applied at both the Picture layer and 
the Macroblock layer.  
 
Figure 5 shows block diagrams of the AVS encoder 
and decoder. The encoder shown in Figure 5a accepts 
input video and stores multiple frames in a set of 
frame buffers. These buffers provide the storage and 
delay required by multi-frame motion estimation. The 
motion estimation unit can accept original frames 
from the input buffers or reconstructed coded frames 
from the forward and backward reference frame 
stores in the encoder. The motion estimation unit can 
perform motion estimation in the following ways: 
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Figure 5a. AVS Encoder  



Forward prediction from the most recent reference 
frame 

• Forward prediction from the second most 
recent prediction frame 

• Interpolative prediction between the most 
recent reference frame and a future reference 
frame. 

 
Motion estimation produces motion vectors used by 
the motion compensation unit to produce a forward 
prediction or interpolated prediction for the current 
frame. Motion vectors are coded for transmission 
first by a predictive encoder, and then by entropy 
encoding. 
 
The prediction produced by the motion compensation 
unit is subtracted from the current frame and the 
difference signal, i.e., the prediction error, is coded 
by the DCT and quantization units. In the case of 
intra-coded macroblocks, the data passes through the 
intra prediction process to the DCT. The signal is 
then VLC encoded, formatted with the motion 
vectors and other side information and stored 
temporarily in the rate buffer. The signal is also 
decoded by the inverse quantizer and inverse DCT, 
and stored in the forward or backward frame buffers 
for subsequent use in motion compensation. The rate 
buffer smooths the variable data rate produced by 
coding into a constant rate for storage or 
transmission. A feedback path from the rate buffer 
controls the quantizer to prevent buffer overflow. A 
mode decision unit selects the motion compensation 
mode for pictures and macroblocks. 
 
 

The decoder shown in Figure 7b accepts the constant 
rate signal from the storage or transmission and 
stores it temporarily in a rate buffer. The data is read 
out at a rate demanded by the decoding of each 
macroblock and picture. The signal is parsed to 
separate the quantization parameter, motion vectors 
and other side information from the coded data 
signal. The signal is then decoded by the inverse 
quantizer and inverse DCT to reconstruct the 
prediction error or intra coded data. The quantizer is 
controlled by the extracted parameter.  
 
The motion vectors are decoded, reconstructed and 
used by the motion compensation unit to produce a 
prediction for the current picture. This is added to the 
reconstructed prediction error to produce the output 
signal. In the case of intra-coded macroblocks, the 
data passes from the DCT through the intra 
prediction process. 
 
Coding tools 
The main tools used in the AVS coder are 
summarized in Table 1. 
 

Motion compensated prediction 
Motion compensated interpolation 
Intra prediction 
DCT coding and linear quantization 
Deblocking (loop filter) 
VLC coding 
Rate buffering 

 
Table 1. Major Coding Tools 

 
The minor tools used in the AVS coder are 
summarized in Table 2. 
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Figure 5b. AVS Decoder. 



 
Motion vector prediction 
Skipped macroblocks 
Coded block pattern 
Low delay mode 
Weighted prediction 
Inverse 3:2 pulldown 

 
Table 2. Minor Coding Tools 

 
Modes 
AVS uses adaptive modes for motion compensation 
at the picture layer and macroblock layer. At the 
picture layer, the modes are  

• Forward prediction from the most recent 
reference frame 

• Forward prediction from the second most 
recent prediction frame 

• Interpolative prediction between the most 
recent reference frame and a future reference 
frame. 

• Intra coding 
 
At the macroblock layer, the modes depend on the 
picture mode.  

• In Intra pictures, all macroblocks are intra 
coded.  

• In Predicted pictures, macroblocks may be 
forward predicted or intra coded.  

• In interpolated pictures, macroblocks may 
be forward predicted, backward predicted, 
interpolated or intra coded. 

 
Profiles and levels 
AVS 1.0 has defined only one profile containing all 
AVS coding tools. It is called Jizhun (Base 
Reference) Profile.  
 
4 levels are defined in AVS 1.0.  

• Level 4.0: Standard Definition 4:2:0,  
• Level 4.2: Standard Definition 4:2:2 
• Level 6.0: High Definition 4:2:0 
• Level 6.2: High Definition 4:2:2 

MOTION COMPENSATED PREDICTION 
In AVS there three types of pictures: 

• Forward predicted: P-Pictures 
• Interpolated: B-Pictures 
• Intra coded: I-Pictures 

 
Predicted Pictures; P-Pictures 
The forward prediction process is illustrated in Figure 
6. Prediction of a Macroblock or block in the current 
picture may be from the most recent reference picture 
or from the second most recent reference picture. 
There may be any number of Interpolated pictures in 
between the current picture and the most recent 
reference picture. There may be any number of 
pictures in between the current picture and the second 
most recent reference picture. Prediction for 
interlaced format is illustrated in Figure 7. In I-
Pictures, the second field may be predicted from the 
first field. In P-Pictures, prediction of the current 
field may be made from the four most recent fields. 
As shown, these fields may be in the current frame, 
most recent frame or second most recent frame. 
 
Interpolated Pictures; B-Pictures 
The interpolated process is shown in Figure 8. A 
Macroblock or block in the current picture is 
predicted by the average of the macroblocks or 
blocks in the most recent and future P-Pictures that 
are selected by the motion vector. Prediction for 
interlaced format is illustrated in Figure 9. Two 
modes are supported for the motion vector selection. 
 
 In Direct Mode, the motion vectors for a macroblock 
in the interpolated frame are derived from the motion 
vector of the co-located macroblock in the future P-
frame. A separate motion vector is not transmitted, 
and the forward and backward motion vectors are 
derived by scaling the P-frame motion vector 
according to the temporal distance between the 
interpolated frame and the past and future P-frames. 
 
In Symmetric Mode, a single motion vector is 
calculated and transmitted that passes through the 
macroblock in the interpolated frame, pointing to the 
past and future P-frames. 
 

Most 
Recent 
Reference 
Picture 

Current 
Picture 

Second Most 
Recent Reference 
Picture 

Figure 6. P-Pictures 
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Figure 7. Interlaced P-Frame Prediction. 

AVS supports a wide range of prediction modes 
using adaptive block sizes. Motion estimation may be 
applied collectively to all luminance blocks in a 
macroblock, or to pairs of luminance blocks, or 
individually to each luminance block. Block formats 
are illustrated in Figure 10. 
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Figure 9. Interlaced B-Frame Prediction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Interpolated Pictures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Motion Compensated Prediction Modes. 

 
Weighted Prediction 
 
Predicted pictures (including P-fields in IP frames) 
can be predicted from reference pictures that have 
been weighted. This provides a mechanism for low-

residual error prediction when there is a lighting 
change in the scene, notably when there is a fade or 
cross-fade. The encoder can signal this to the decoder 
by optionally transmitting scale and shift parameters 
for both luminance and chrominance components. 
These parameters are used in the following equations 
to compute the weighted prediction matrices: 
 
predMatrix[x,y] = 
(predMatrix[x,y] × luma_scale + 16)>>5 + luma_shift 
 
PredMatrix [x,y] =  
(PredMatrix[x,y] × chroma_scale + 16)>>5 + chroma_shift 
 
Out-of-Order Coding 
Interpolated frames cannot be encoded or decoded 
until after the respective reference frames have been 
encoded or decoded. Therefore the coded 
representations of the reference frames are placed in 
the bitstream before those of the interpolated frames.  
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Motion vector precision and range 
Motion vectors are computed with ¼-pixel accuracy 
and with unlimited range.  
 
Sub-Pixel Interpolation 
Luminance values at sub-pixel locations are 
interpolated by a process in which the values at ½-
pixel locations are calculated using a 4-tap filter: { -1, 
5, 5, -1} , and the values at ¼-pixel locations are 
calculated using a 4-tap filter { 1, 3, 3, 1} . For 
simplicity, only one-dimensional filters are used. The 
nomenclature for the locations is shown in Figure 11. 
Shaded locations represent the original (full -pixel) 
locations. 
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Figure 11. Sub-Pixel Interpolation 

 
The following equations describe the process for each 
sub-pixel location: 
 
B:  b’=(-C+5D+5E-F); b=Clip1((b’+4)>>3) 
H:  h’=(-A+5D+5H-K); h=Clip1((h’+4)>>3) 
 
Similarly, aa, s and dd are computed using the first 4-
tap filter horizontall y on the top, third and bottom 
rows of the array in Figure 11, while bb, m and cc are 
computed using the left, third and right columns of 
the array. Then j can be computed using either the 
available row or column of corresponding locations. 
 
J: j’=(-bb+5h+5m-cc) or j’=(-aa+5b+5s-dd); 
j=Clip1((j’+32)>>6) �  
 
Then a, d, i and f are computed using the second 4-
tap filter: 
a’= (ee+7D+7b+E);  a=Clip1((a’+64)>>7)  
d’= (ff+7D+7h+H);  d=Clip1((d’+64)>>7)  
i’= (gg+7h+7j+m);  i=Clip1((i’+512)>>10)  
f’= (hh+7b+7j+s);  f=Clip1((f’+512)>>10)  

 
c and n are computed using the second 4-tap filter 
during subsequent cycles of the process. The value of 
c is computed during the calculation of sub-pixel 
values between pixels E, F, I, J, i.e., one pixel-space 
to the right in Figure 11. The value of n is computed 
during the calculation of sub-pixel values between 
pixels H,I, K, and L, i.e., one pixel-space below in 
Figure 11.  
 
Finally, e, g, p, r are computed by simply averaging 
their diagonal neighbor pixels: 
e = ( D + j + 64 ) >> 7 
g = ( E + j + 64) >> 7 
p = ( H + j + 64 ) >> 7 
r = ( i + j + 64 ) >> 7 
 
Chrominance values at sub-pixel locations are computed 
from the 4 neighborhood pixels according to the following 
equation and Figure 12. 
 
v = ( (8-dx)×(8-dy)×A + dx×(8-dy)×B + (8-dx)×dy×C + 
dx×dy×D + 32 ) >> 6 
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Figure 12. Chrominance Sub-Pixel Interpolation. 
 
Motion vector prediction 
Motion vectors are predicted using the motion 
vectors for blocks in their neighborhood. The 
nomenclature is shown in Figure 13. A, B, C are the 
motion vectors of left, above and above-right blocks. 
 
 
 
 
 
 
 
 

Figure 13. Motion Vector Neighborhood. 
 
The motion vectors are scaled according to the 
temporal distance from the reference frame (most 
recent or second most recent). 
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If prediction is being performed in 16x8 or 8x16 
format, the motion vectors used for prediction are as 
follows: 
 
16x8 Mode: 
 Top subblock – use MVB 
 Bottom Subblock – use MVA 
8x16 Mode: 
 Left subblock - use MVA 
 Right subblock – use MVC 
 
Otherwise, a spatial distance measure is computed:  
 
Dist12 (MV1, MV2) = |x1 – x2| + |y1 – y2| 
 Where (x,y) are the components of MV 
 
between pairs of neighboring blocks DistAB; 
DistBC, DistCA and the median distance is found. 
The prediction motion vector is then found according 
to the following rules: 
 If median = DistAB, use MVC 
 If median = DistBC, use MVA 
 If median = Dist CA, use MVB 
 
INTRA-PREDICTION 
In Intra frames and intra-coded macroblocks in P- 
and B-frames, intra blocks are spatiall y predicted 
from neighboring intra-coded blocks. Figure 14 
ill ustrates the process, from which it can be seen that 
prediction is made using 16 pixels above and to the 
right of the block, and 16 pixels to the left and below-
left of the block. There are 5 directional modes and a 
DC mode (mode 2). 
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Figure 14. Intra Prediction Modes. 
 
Signaling of the prediction mode to the decoder can 
be explicit, in which case this is signaled using a 
prediction mode flag, or it can be implicit, following 

a set of rules so the decoder can make the same 
decision as the encoder. In the latter case, selection of 
the prediction mode is based on the prediction modes 
for the blocks above (Mode A) and to the left (Mode 
B) of the current block. The lower numbered mode 
for these two blocks is selected for the current block.  
If either invalid, pick mode 2. In the former case, the 
mode in the bitstream is used if it is smaller than the 
mode above, otherwise, add 1 to the bitstream mode. 
 
 
DCT CODING 
Transform 
AVS uses a separable, integer-precise, 8x8 discrete 
cosine transform (DCT). The inverse transform is 
shown in Figure 15.  The transform is designed in 
conjunction with the quantization to minimize 
decoder implementation complexity. This operation 
will be described here. The separable inverse 
transform is applied to the rows of the coeff icient 
matrix data: 

H’  = CoeffMatrix × T8
T 

 
The elements of this intermediate transform are then 
scaled with rounding: 

H” ij = (h’  ij + 4) >> 3 
 
Then the columns are transformed: 

H = T8 × H’’   i, j = 0..7 
 
Finall y the residual matrix is formed by scaling (with 
rounding): 

r ij = [h ij + 26] >> 7 i, j = 0..7 
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Figure 15. DCT-based integer Transform  

 
Coefficient Scan Order 
The 2D coefficients are converted into a 1D sequence 
for quantization and coding using a zigzag scan for 
progressive data and an alternate scan for interlaced 
data. These are shown in Figure 16. 
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Figure 16a. Zigzag Scan. 
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Figure 16b. Alternate Scan 
 
Quantization 
Quantization of the transform coeff icients is 
performed with an adaptive linear quantizer. The step 
size of the quantizer can be varied to provide rate 
control. In constant bitrate operation, this mechanism 
is used to prevent buffer overflow. The transmitted 
step size quantization parameter is used directly for 
luminance coeff icients. For chrominance coeff icients 
it is modified on the upper end of its range. 
 
The quantization parameter may optionally be fixed 
for an entire picture or sli ce. If it is not fixed, it may 
be updated differentiall y at every macroblock. 
 
The linear quantization process is modified to work 
together with the transform in order to provide low 
complexity decoder implementation. The resulting 
non-linear quantization and scaling coeff icients are 
held in look-up tables, “DequantTable” , “ShiftTable” 

and the inverse quantization and scaling process is as 
follows: 
 
w ij = (QuantCoeffMatrix[i,j]×DequantTable(QP) 

+2ShiftTable(QP)-1) >> ShiftTable(QP) i,j=0..7 
 
ENTROPY CODING 
The quantized coeff icients are coded using a 2D 
variable length code for run and level. Sets of kth-
order exponential Golomb codes are used, with a 
code number (“CodeNumber” ) range of 0 to 59. The 
code number 59 is used as an escape code. A set of 7 
tables is used for intra-coded luminance coeff icients 
and a set of 7 tables for inter-coded luminance 
coeff icients. A set of 5 tables is used for both intra- 
and inter-coded chrominance coeff icients. An “EOB” 
(End of Block) code is used to terminate coding of a 
given block. (However tables VLC0_Intra, 
VLC0_Inter and VLC0_Chroma are used only to 
decode the first coeff icient, so that in these tables 
there is not EOB, as it is obvious that if a block has 
non-zero coeff icients, the first coeff icient cannot be 
EOB). In all these tables, the assignment of code 
numbers to level and run is specified only for positi ve 
levels. Run and negative levels are assigned as 
follows: 
 
CodeNumber (-abs(level), run ) = 
  CodeNumber (abs(level), run ) + 1 
 
In the decoding process, 2D-VLC tables are switched 
based on the size of the previously decoded level. A 
set of threshold level values determines the switching 
point. The first coeff icient in a block is decoded 
using the first table.  The absolute value of that 
coeff icient is compared against the set of thresholds 
to determine which table will be used for the next 
coeff icient. This process continues recursively until 
the EOB is decoded. Decoding of that block then 
terminates and the process is reset for the next block. 
 
When the code number is equal to 59 in the parsing 
process, which means (level, run) is beyond the scope 
of the table, another two CodeNumbers are parsed 
from the bitstream, and decoded to produce level and 
run values. 
 
Entropy coding is also used for other elements of the 
bitstream, notably the motion vectors. 
 
DEBLOCKING FILTER 
The deblocking filter or loop filter is a non-linear 1D 
filter selectively applied across the edges of blocks in 
order to smooth block artifacts. The filter is turned on 
and off, and applied with varying strength according 
to local conditions in the block neighborhood. The 
filter parameters can be signaled explicitl y in the 
bitstream on a picture basis, or they can be deduced 
by the decoder based on the local conditions. The 



deblocking filter is applied recursively to the upper 
edge and left-hand edges of blocks. Essentially, the 
filter is adaptive to whether adjacent blocks are intra 
coded or whether the reference frames and motion 
vectors are significantly different. Further, the filter is 
adaptive to local pixel gradients across the block 
boundary and to the state of the quantization 
parameter. Experience has shown that all these 
factors influence discontinuities across block 
boundaries and the visibility of such discontinuities. 
 
RATE BUFFERING 
AVS supports constant bitrate (CBR) operation using 
traditional coding tools. 
 
SYNTAX 
The AVS syntax supports a number of additional 
features, some of which are listed here: 

• Separate I and PB picture headers 
• Progressive sequence and frame 
• Interlaced parameters  
• Low -delay mode incl. buffer management 
• Sequence extension data 
• SMPTE timecode in I-pictures 
• Picture distance 
• Fixed QP at frame or slice level 
• Skip coding mode 
• Picture weighting selection and parameters 

 
PERFORMANCE 
The performance of AVS has been measured for a set 
of HDTV test sequences. The format of these 
sequences is 720p, and the range of bitrates is from 
approximately 1Mbit/s to approximately 20 Mbit/s. A 
comparison has been made with H.264. The results 
are shown in Figure 17, from which it can be seen 
that  for these sequences and bitrates, the 
performance of AVS 1.0 is within 0.1dB in almost all 
cases.  
 
SUMMARY 
The AVS 1.0 standard combines a set of traditional 
video coding tools with new coding tools into an 
efficient new algorithm. Compared with other 
standards, AVS is significantly less complex. 
However, the performance of AVS for its target 
applications is very high. This indicates that by 
focusing on particular applications, and using 
innovative algorithm design, it is possible to 
simultaneously achieve high coding efficiency and 
low implementation cost. 
 
Reference 
J R Jain, A K Jain, “Interframe Adaptive Data 
Compression Techniques for Images”, Signal and 
Image Processing lab., Dep. Electrical & Computer 
Eng., UC Davis Tech Rep., Aug 1979. 
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Figure 17. AVS Test Results. 
[AVS CD, AVS Ref. Model 30, H.264] 

[H.264 Main Profile with CABAC and Loop Filter on] 
 




